Part Number Hot Search : 
CF60205R 70400 GMC8875C SK9822 ADM10 2SC2073A FLR380F STD2045C
Product Description
Full Text Search
 

To Download L4955V33 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
L4955
5A ULDO LINEAR REGULATORS FAMILY
UP TO 5A OUTPUT CURRENT 2% PRECISE OUTPUT VOLTAGES FAST TRANSIENT RESPONSE 0.75V TYP. DROP OUT VOLTAGE AT 5A OPERATING INPUT VOLTAGE FROM 4.5V ADJUSTABLE VERSION: * VO = 1.26V * INHIBIT (IQ = 120A TYP.) * POWER GOOD * PROGRAMMABLE CURRENT LIMIT * HEPTAWATT PACKAGE FIXED VERSION: * 3.3V, 5.1V OUTPUTS * VERSAWATT PACKAGE VERY LOW QUIESCENT CURRENT SHORT CIRCUIT PROTECTION (Foldback function) THERMAL SHUTDOWN APPLICATIONS PENTIUMTM AND POWER PCTM SUPPLIES POST REGULATOR FOR SMPS LOW COST SOLUTION FOR 5V TO 3.3V CONVERSION LOW COST BATTERY CHARGER CONSTANT CURRENT REGULATOR SUITABLE FOR APPLICATION WITH STANDBY FEATURE DESCRIPTION The L4955 is a family of monolithic ultra very low drop linear regulators designed to supply the most recent microprocessors. TYPICAL APPLICATIONS
INH VIN IN 1 3 PG 6 7 OUT R1 5 GND ADJ R2 C2 VOUT
MULTIPOWER BCD TECHNOLOGY
HEPTAWATT ORDERING NUMBERS L4955 L4955V3.3 L4955V5.1 OUTPUT VOLTAGE 1.26V ADJ 3.3V 5.1V
VERSAWATT (TO-220) PACKAGE HEPTAWATT VERSAWATT VERSAWATT
The dropout voltage is only 0.75V (Typ.) at 5A, directly dependent on the output current conditions. Realized in BCDII technology, it has on board a charge pump to properly drive an N-channel power mos Transistor with 150m of RDSON. It operates from a 4.5V minimum supply, with a very low quiescent current irrespective of the load; a minimum of 22F output capacitor is required for stability. The on-chip trimming techniques improve the precision of the available output voltages to 2%. Ancillary functions like power good, inhibit with low power consumption, programmable output voltage and current limiting make the flexible heptawatt version usable in applications where power management, stand-by, features, post regulation and adjustable current generators for battery chargers are important.
L4955
C1 CL 2 4
VIN C1
IN
1
L4955VXXX
2 GND
3
OUT
VOUT C2
D97IN590
D97IN589
February 1999
1/14
L4955
ABSOLUTE MAXIMUM RATINGS
Symbol VIN Supply Input Voltage ADJ and CL pins PG and INH pins PTOT Tst, Ti Power Dissipation @ Tamb = 50C Power Dissipation @ Tcase = 90C Storage Temperature Parameter Value 24 -0.3 to 4 0 to VIN 2 15 -40 to +150 Unit V V V W W C
PIN CONNECTIONS (Top views)
7 6 5 4 3 2 1 tab connected to pin 4
D96IN367
OUT PG ADJ GND INH CL IN
D96IN369
3
OUT GND
1
IN
HEPTAWATT
VERSAWATT (TO220)
BLOCK DIAGRAM
VIN 10F
IN 1(1) VREF= 1.26V FIXED C.L. CHARGE PUMP
FOLDBACK
PRE REGULATOR
+ -
E/A PROGRAM. C.L.
BUFFER
POWER DMOS 150m OUT 7(3) R1 ADJ VOUT 22F
THERMAL SHUTDOWN
INH
3 VREF + 2 PIN x = HEPTAWATT PIN (x) = VERSAWATT RCL (1/4W, 1%) CL 4(2) GND 0.9V REF 6 PG
D96IN366
1.26V INHIBIT ACTIVE HIGH
5 + -
R2
2/14
L4955
PIN FUNCTIONS
HW 1 2 3 4 5 6 7 VW 1 - - 2 - - 3 Name IN CL INH GND ADJ PG OUT Function Unregulated input voltage; this pin must be bypassed with a capacitor larger than 10F. A resistor connected between this pin and ground sets the programmable current limiting value. When the programmable current limiting is not used the pin must be connected to GND. TTL-CMOS input. A logic high level on this input disables the device. An internal pull-down insures full functionally even if the pin is open. Ground. The output is connected directly to this terminal for 1.26V operation; it is connected to the output through a resistive divider for higher voltages. Open drain output, this signal is low when the output voltage is lower than 90%, otherwise is high. Regulated output voltage. A minimum bypass capacitor of 22F is required to insure stability.
THERMAL DATA (HEPTAWATT & VERSAWATT packages)
Symbol Rth j-case Rth j-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Thermal Shutdown Thermal Hysteresis Max. Max. Typ. Typ. Value 2.5 50 150 20 Unit C/W C/W C C
L4955 - ELECTRICAL CHARACTERISTICS (Tj = 25C, Vin = 12V, unless otherwise specified). * = Specifications referred to TJ from 0C to +125C.
Symbol VIN VO V O V O VO Parameter Operating Supply Voltage Output Voltage (1) Line regulation Dropout Voltage (1) 0.1A < IO < 5A; 4.5V < VIN <12V 4.5V < VIN < 12V; 0.1A < IO < 5A 4.5V < VIN <22V; IO = 10mA 0.1A < IO < 5A IO = 5A VIN 4.5V IO = 2A IO Current Limiting Short Circuit Current Programmable Current Limiting IQ Quiescent Current Stand By Current Inhibit Threshold Inhibit Hysteresis Inhibit Bias Sink Current Power Good Threshold Power Good Hysteresis Power Good Saturation Ripple Rejection
(1) Output voltage connected to ADJ.
Test Condition
Min. 4.5 1.235 1.222
Typ. 1.26 1.26 2 2 0.75 1.1 0.55
Max. 22 1.285 1.298 10 10 1.1 1.5 0.75 7.5 3.45 1.00 3 4 200 1.42 60
Unit V V V mV mV V V V A A A A mA mA A V V A V V
*
Load regulation (1)
VO = 0V Rlim = 13k Rlim = 47k 0.1A < IO < 5A INH = 5V Rising Edge INH = 5V or 0.8V Rising Edge IPG = 4mA f = 120Hz, IO = 5A VIN = 6V VIN = 2VPP CL = 0 C L = 13k
* * * * * *
5.1 2.55 0.70
6.3 1.8 3 0.85 2 2.7
*
120 1.1 1.26 0.2 20 0.9 x VO 0.2 0.1 60 75
* *
0.4
V dB
3/14
L4955
L4955V3.3 - ELECTRICAL CHARACTERISTICS (Tj = 25C, Vin = 5V, unless otherwise specified) * = Specifications referred to TJ from 0C to +125C.
Symbol VIN VO Parameter Operating Input Voltage Output Voltage 4.75V < VIN < 12V; 0.1A < IO < 5A 4.75V < VIN < 12V; 0.1A < IO < 5A V O V O IO Line regulation Load regulation Current Limiting Short Circuit Current IQ Quiescent Current Ripple Rejection VO = 0V 0.1A < IO < 5A f = 120Hz, IO = 5A VIN = 6V VIN = 2VPP 57 4.5V < VIN <12V; IO = 10mA 0.1A < IO < 5A Test Condition Min. 4.5 3.234 3.300 3.300 2 3 Typ. Max. 22 3.366 3.399 10 15 7.5 Unit V V V mV mV A A 3 mA dB
*
3.201
* *
5.1
6.3 1.8 2 70
L4955V5.1 - ELECTRICAL CHARACTERISTICS (Tj = 25C, Vin = 8V, unless otherwise specified) * = Specifications referred to TJ from 0C to +125C.
Symbol VIN VO Parameter Operating Input Voltage Output Voltage 6.75V < VIN < 15V; 0.1A < IO < 5A 6.75V < VIN < 15V; 0.1A < IO < 5A VD Drop-out Voltage IO = 5A Test Condition Min. VO+VD 5.000 5.100 5.100 0.75 Typ. Max. 22 5.200 5.250 1.1 1.5 0.75 10 20 7.5 Unit V V V V V V mV mV A A 3 mA dB
* * *
4.950
1.1 0.55 2 5
IO = 2A V O V O IO Line regulation Load regulation Current Limiting Short Circuit Current IQ Quiescent Current Ripple Rejection VO = 0V 0.1A < IO < 5A f = 120Hz, IO = 5A VIN = 8V VIN = 2VPP 6.5V < VIN <15V; IO = 10mA 0.1A < IO < 5A
* *
5.1
6.3 1.8 2
55
65
4/14
L4955
L4955 Figure 1: L4955 DC Operating Area
O u tput C ur rent [A ] 8 7 6 5 4 3 2 1 0 0 2.5 5 D C O perating A re a T c = 70C P dm ax = 22W 7.5 10 12.5 15 (V in - Vou t) [V ] 17.5 20 22.5 R dson lim it Pow er D is sipation Lim it T c = 25C P dm ax = 40W C urr ent Lim itation V in > 4.5V T j = 125C
Figure 2: Output Voltage Stability vs. Junction Temperature
Vo u t [V ] 1 .2 8 1 .2 7 5 1 .2 7 1 .2 6 5 1 .2 6 1 .2 5 5 1 .2 5 1 .2 4 5 1 .2 4 -40
V in = 1 2 V Io u t= 1 0 m A
0
40 T j [C ]
80
1 20
160
Figure 3: Line Regulation vs. Junction Temperature
[m V 5 4 .5 4 3 .5 3 2 .5 2 1 .5 1 0 .5
4 .5V < V in< 2 2V Iou t= 1 0 m A
Figure 4: Load Regulation
5 [m V ] 4 3 2 1 0 -1 -2 -3 -4 Vo u t = V A D J
V in = 1 2 V T j = 25 C ( P u ls e d t e c h n iq u e h a s b e e n u s e d )
Deviation
Voltage
Output
0
O utput Voltage
D eviation
-4 0 -2 0
0
20 40 60 80 100 120 140 160 T j [C ]
-5
0
1
2 Io u t [A ]
3
4
5
Figure 5: Dropout Voltage
M in im u m V in - Vo u t Vo lta g e [V ] 1 .2 5
Figure 6: Maximum OutputCurrent vs. Junction Temperaturewith internalcurrent limiting
O utput C urrent [A] 10 9
T j = 1 2 5 C
1
8 7
0 .7 5
T j = 2 5 C
6 5 4
T j = -4 0 C
0 .5
3 2
(Vin-Vout) > 2V pin 2 = G ND
0 .2 5
P u l s e d t e c h n iq u e h a s b e e n u s e d
1
6
0 0 1 2 3 Io u t [A ] 4 5
0 -40 -20
0
20
40
60 80 100 120 140 160 Tj [C]
*P ulsed tecnique ha s been used
5/14
L4955
L4955 Figure 7: Short-circuit Current vs. Junction Temperature with Programmable Current Limiting
S h o r t- c ir c uit C u r r e nt [A ] 3 .5 3 2 .5 2 1 .5 1 0 .5 0 -40 -20 R lim = 4 7 k 0 20 4 0 60 80 T j [ C ] 10 0 12 0 1 40 160 R lim = 1 9 k R lim = 1 3 k
Figure 8: Quiescent Current vs. Temperature (CL = 0V)
Iq [m A ] 2 .6 2 .4 2 .2 2 1 .8 1 .6 1 .4 1 .2 1 0 .8 0 .6 0 .4 -4 0 - 2 0
V in = 1 2 V Io u t =1 0 m A t o 5 A
0
20
40
* P u ls ed te c ni q u e h as b e e n u s e d
6 0 8 0 1 00 1 20 1 4 0 1 6 0 T j [ C ]
Figure 9: Quiescent Current vs. Supply voltage (CL = 0V)
I q [m A ] 5 4 .5 4 3 .5 3 2 .5 2 1 .5 1 0 .5 0 0 5 10 15 V in [ V ] 20 25
T j= - 4 0 C
Figure 10: Quiescent Current vs. Supply Voltage with Programmable Current Limiting
Iq [mA] 5 4.5 4 Tj = 25C
Io = 1 0 m A t o 5 A
3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 Vin [V] 15 20 25
Rlim = 47k Rli m = 13k
T j= 2 5 C T j= 1 2 5 C
Figure 11: Stand-by Current vs. Supply Voltage with INH = LOGIC HIGH
Iq [u A ] 400 350 300 250
T j= 2 5 C
Figure 12: Ripple Rejection vs. Frequency
R i p p le R e je c tio n [d B ] 1 00 90 80 70 60
V r ip p le = 3 V p - p V r ip p le = 0 . 5 V p - p
200 150 100 50 0
50 40 30 20 10
C in = 2 2 u F C o u t = 2 2uF V o ut = 1.26 V V in m in = 4 . 5 V Io u t = 5 A
0
5
10 V in [V ]
15
20
25
0
10
100
F r e q u e n c y [H z ]
1k
10k
1 00 k
6/14
L4955
L4955 Figure 13: Ripple Rejection vs. Output Current
R i p p le R e je c t io n [d B ] 100 90 80 70 60 50 40 30 20 10 0 0
C in = 2 2 u F C o u t= 2 2 u F V o u t= 1 .2 6 V V in m i n = 4 . 5 V F r ip p l e = 5 0 k H z V r ip p le = 0 . 5 V p -p
Low High Low
Figure 14: Power Good Function
VADJ VOUT=VADJ (R1+R2)/R2
F r ip p le = 1 2 0 H z V r ip p le = 3 V p - p F r ip p l e = 1 k H z V r ip p le = 0 . 5 V p - p F r ip p l e = 1 0 k H z V r ip p le = 0 . 5 V p - p
0.9 VADJ hyst = 200mV
t PG
t
D96IN364B
1
2
3 I o u t [A ]
4
5
Figure 15: Inhibit Function
VINH
Vref = 1.26V hyst = 200mV
t
regulator ON
regulator OFF
regulator ON
D96IN365A
t
7/14
L4955
LINE TRANSIENT RESPONSE Figure 16.
Figure 17.
Figure 18.
Test condition: VIN = 12V; VIN = 1V; VO = 3.3V; IO = 200mA; CIN = 10F (electrolytic capacitor); Cout = 22F (electrolytic capacitor); dV/dt = 0.1 V/s; TJ = 25C
8/14
L4955
LOAD TRANSIENT RESPONSE Figure 19. Figure 20.
Figure 21.
Test condition: VIN = 5V, VOUT = 3.3V; Load Transient from 0.5A to 5A;
dIout = 20A s; TJ = 25C dt
Figure 22: Load transient test circuit.
PG VIN = 5V IN 1 6 7 OUT R4 910 R5 560 C4 to C9 100F/10V AVX TPS 6 each C10 to C15 1F AVX X7R 6 each VOUT = 3.3V
L4955
C1,C2 470F/25V Panasonic HFQ 2 CL GND 4 3 5 INH
ADJ
D97IN546
9/14
L4955
L4955V3.3 Figure 23: DC operating area.
O utput Current [A]
8 7 6 5 4 3 2 1 0
Figure 24: Output Voltage Stability vs. Junction Temperature.
Vo ut [V ] 3 .4
Current Lim itation
Vout = 3.3V T j = 125C
3 .35
V in = 5V Iou t = 1 0mA
Power Dissipation Lim it Rdson lim it T c = 25C Pdm ax=40W
3 .3
3 .25
DC O perating Area
T c=70C Pdm ax=22W
3 .2 -4 0 0 40 T j [C ] 80 120 1 60
3
4.5
6
7.5
9
10.5 12 13.5 15 16.5 18 19.5 21 22.5
Input Voltage [V]
Figure 25: Quiescent Current vs. Temperature.
Iq [m A] 3
Figure 26: Load Regulation
5 4 Output Voltage Deviation [mV] 3 2 1 0 -1 -2 -3 -4 -5 Vin=5V Tj = 25 C (Pulsed tecnique has been used) 0 1 2 Iout [A] 3 4 5
2 .7 5 2 .5 2 .2 5 2 1 .7 5 1 .5 1 .2 5 1 0 .7 5 0 .5 0 .2 5 0 -4 0 -2 0 0 20 40 60 T j [C ] 80 1 00 120 1 40 160 V in= 5 V I ou t = 10 m A to 5 A
Figure 27: Line regulation vs. Junction Temperature.
5 4.5 Output Voltage Deviation [mV] 4 3.5 3 2.5 2 1.5 1 0.5 0 -40 -2 0 0 20 40 60 80 T j [C ] 10 0 1 20 1 40 160
4.5 V < V in < 12 V Io u t = 1 0 m A
Figure 28: MaximumOutput Current vs.Junction Temperaturewith internalcurrent limiting
O utput C urrent [A] 10 9 8 7 6 5 4 3 2 1 0 -40 -20 0 20 40 60 80 100 120 140 160 Tj [C] (Vin-Vout) > 2V pin 2 = G ND
*P ulsed tecnique ha s been used
10/14
L4955
L4955V5.1 Figure 29: DC operating area.
O ut put C u rr e nt [A ] 8 7 C u rre nt L im itatio n 6 5 4 3 DC O pe ratin g A re a 2 1 0 0 2 .5 5 7 .5 10 (V in - Vou t) [V ] 1 2 .5 15 1 7 .5 T c = 70 C P dm a x = 2 2W Rd so n lim it Pow er D issip a tio n Lim it Vou t = 5.1V T j = 125 C
Figure 30: Output Voltage Stability vs. Junction Temperature.
Vout [V] 5.2 5.15 V in = 8V Iout = 1 0mA
5.1
T c = 2 5C P d m a x = 4 0W
5.05
5 4.95
4.9 -4 0 0 40 T j [C ] 80 12 0 1 60
Figure 31: Quiescent Current vs. Temperature.
Iq [mA] 3
Figure 32: Load Regulation
10 8 Output Voltage Deviation [mV] 6 4 2 0 -2 -4 -6 -8 -10
V in = 8 V Tj = 2 5 C (P uls e d tec n iq u e h as be en us ed )
2 .75 2.5 2 .25 2 1 .75 1.5 1 .25 1 0 .75 0.5 0 .25 0 -40 -20 0 20 40 60 T j [C] 80 100 1 20 140 160 Vin = 8V Iout = 10mA to 5A
0
1
2 Io u t [A]
3
4
5
Figure 33: Line regulation vs. Junction Temperature.
5 4.5 Output Voltage Deviation [mV] 4 3.5 3 2.5 2 1.5 1 0.5 0 -40 -20 0 20 40 60 80 Tj [C] 100 120 140 160 6.5V < Vin < 15V Iout = 10mA
Figure 34: Maximum OutputCurrent vs. Junction Temperaturewith internalcurrent limiting
O utput C urrent [A] 10 9 8 7 6 5 4 3 2 1 0 -40 -20 0 20 40 60 80 100 120 140 160 Tj [C] (Vin-Vout) > 2V pin 2 = G ND
*P ulsed tecnique ha s been used
11/14
L4955
DIM. A C D D1 E E1 F F1 G G1 G2 H2 H3 L L1 L2 L3 L4 L5 L6 L7 L9 M M1 V4 Dia mm TYP. inch TYP.
MIN.
2.4 1.2 0.35 0.7 0.6 2.34 4.88 7.42 10.05 16.7 21.24 22.27 2.6 15.1 6 2.55 4.83 3.65 2.54 5.08 7.62
16.9 14.92 21.54 22.52 2.8 15.5 6.35 0.2 2.8 5.08
MAX. 4.8 1.37 2.8 1.35 0.55 0.97 0.8 0.9 2.74 5.28 7.82 10.4 10.4 17.1 21.84 22.77 1.29 3 15.8 6.6 3.05 5.33 40 3.85
MIN.
0.094 0.047 0.014 0.028 0.024 0.095 0.193 0.295 0.396 0.657 0.386 0.877 0.102 0.594 0.236 0.100 0.190 (typ.) 0.144 0.100 0.200 0.300
0.668 0.587 0.848 0.891 0.110 0.610 0.250 0.008 0.110 0.200
MAX. 0.189 0.054 0.110 0.053 0.022 0.038 0.031 0.035 0.105 0.205 0.307 0.409 0.409 0.673 0.860 0.896 0.051 0.118 0.622 0.260 0.120 0.210 0.152
OUTLINE AND MECHANICAL DATA
Heptawatt V
L E L1 M1 A C D1 L5 L2 L3
E E1 F
V
V
D
M H2
V4
L9
H3
H1
Dia.
G
G1
G2
F L7 L6 L4 H2 F1
HEPTAMEC
12/14
L4955
mm MIN. A C D E F F1 F2 G G1 H2 L2 L4 L5 L6 L7 L9 M Dia 3.75 13.0 2.65 15.25 6.20 3.50 2.6 3.85 0.147 4.40 1.23 2.40 0.49 0.61 1.14 1.14 4.95 2.40 10.0 16.4 14.0 2.95 15.75 6.60 3.93 0.511 0.104 0.600 0.244 0.137 0.102 0.151 TYP. MAX. 4.60 1.32 2.72 0.70 0.88 1.70 1.70 5.15 2.70 10.4 MIN. 0.173 0.048 0.094 0.019 0.024 0.044 0.044 0.194 0.094 0.393 0.645 0.551 0.116 0.620 0.260 0.154 inch TYP. MAX. 0.181 0.051 0.107 0.027 0.034 0.067 0.067 0.203 0.106 0.409
DIM.
OUTLINE AND MECHANICAL DATA
Versawatt (TO220)
M
TO220MEC
13/14
L4955
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publicationsupersedes and replaces all information previously supplied. STMicroelectronics products are notauthorizedfor use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics. The ST logois a registered trademark of STMicroelectronics (c) 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com
14/14


▲Up To Search▲   

 
Price & Availability of L4955V33

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X